AFRL-IF-RS-TR-2000-12
Final Technical Report
February 2000

REUSABLE TOOLS FOR KNOWLEDGE BASE AND
ONTOLOGY DEVELOPMENT

SRI International

Vinay K. Chaudhri

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

oo s e« 20000331 014

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-12 has been reviewed and is approved for publication.

APPROVED: C\‘wc\ g OLML%NM_

CRAIG S. ANKEN
Project Engineer

FOR THE DIRECTOR: %p Sl

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE OMB o, 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Infarmation
Operations and Reports, 1216 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

T. AGENCY USE ONLY /Leave blonk] 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED

FEBRUARY 2000 Final _Sep 96 - Jul 99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
REUSABLE TOOLS FOR KNOWLEDGE BASE AND ONTOLOGY C - F30602-96-C-0332
DEVELOPMENT PE - 63728F

PR - 2532

6. AUTHOR(S) TA - 01
Vinay K. Chaudhri WU - 51
7. PERFORMING CRGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International REPORT NUMBER
333 Ravenswood Avenue
Menlo Park CA 94025-3493 N/A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory/IFTD AGENCY REPORT NUMBER

525 Brooks Road

Rome NY 13441-4505 AFRL-IF-RS-TR-2000-12

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Craig S. Anken/IFTD/(315) 330-4833

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)

In the construction of a new knowledge base (KB), significant productivity gains can be obtained by reusing existing
knowledge components. These components include pieces of domain knowledge and KB development tools. To support
reuse of domain knowledge, the knowledge sharing community has undertaken various efforts, including the development of
shared portable ontologies and the development of well-defined languages for knowledge interchange. There has been,
however, less emphasis on the reuse of KB development tools. A significant amount of effort is invested in building
customized tools for specific knowledge representation systems (KRSs). These tools work only with a single KRS, and the
development effort is wasted if the KRS is no longer used. A KRS developer usually does not have the choice of using
off-the-shelf tools and is forced to develop custom tools.

Open knowledge base connectivity (OKBC) is an application programming interface (API) for KPRSs that has been
developed to address the problem of KB tools reusability. The name OKBC was chosen to be analogous to ODBC (Open
Database Connectivity), as used in the database community.

This work experimented with several KB development tools to test the ability of OKBC to enable the construction of
reusable tools. These tools included GKB-editor, a graphical tool for browsing and editing KBs, and PERK, a system for
storing KBs in Oracle and for controlling multiuser access to KBs.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Knowledge Base, Artificial Intelligence, Reuse

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 gRev. 2-89) (EG)
Prescribed by ANS| Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

Introduction
OKBC
2.1 Support for assertions e e
2.1.1 Assertion langunage e
2.1.2 Assertions not guaranteed to be supported by OKBC
2.2 Handling entities that are not frames
2.2.1 Not all entities are frames o e
2.2.2 Not all entity categories are frames
2.3 Systems that do not support named frames o0 0oL,
2.4 Controlling KRS inference o o o oo
2.5 Handlingdefaults o
2.6 OKBC compliance v v v v ittt it e et e e e e
2.7 Support for polymorphism L e
2.8 Checking constraints L L e
2.9 Comparing OKBC knowledge model with object-oriented databases
2.9.1 Schema queries in OKBC
2.9.2 Enhancing a database query language to query schema
GKB-Editor
3.1 Reusing GKB-Editor with Ontolingua
3.2 Spreadsheet Viewer for GKB-Editor,
3.3 WWW Interface for GKB-Editor 0 oo,
Reusing PERK with LOOM
Conflict Arbitration Interface for Collaboration System
Evaluation of OKBC
6.1 OKBC bindings« o o v it i it e e
6.2 OKBC uses in DARPA’s HPKB project,
6.3 Limitationsof OKBC e
Directions for Future Work
7.1 OKBC applications 0 i i i i i et e e e e
7.2 Speeding KB construction timeo oo oo
7.3 Knowledge bases and knowledge discovery oo
7.4 Object-relational knowledge servers o 0oL

Summary and Conclusions

w

W WO~~~ S OO A

21
23

24
24
24
25

26
26
26
27
28

28

Figure 1:
Figure 2:
Table 1:
Table 2:
Table 3:
Table 4:

List of Figures

The OKBC knowledge model
Inclusion relationship among compliance classes

List of Tables

Querying Schema Information by Using OKBC/GFP
Facets Supported by OKBC

A Sample Class Definition

Example Constraint Queries

la

15
16
17
17

Preamble

This project has investigated techniques for constructing reusable knowledge base (KB) devel-
opment tools. A KB development tool is reusable if it can be used with multiple knowledge
representation systems (KRSs). The primary technique employed for this purpose was Open
Knowledge Base Connectivity (OKBC), which is an application programming interface (API) for
accessing KRSs.

OKBC has improved upon its predecessor. the Generic Frame Protocol (GFP), in several
significant ways. Some of our contributions to this improvement include the design for an asser-
tional view of a KRS. the design of constraint checking operations, and a comparison with schema
querying facilities of object-oriented databases. ‘

We experimented with several KB development tools to test the ability of OKBC to enable the
construction of reusable tools. These tools included GKB-Editor, a graphical tool for browsing
and editing KBs, and PERK. a system for storing KBs in Oracle and for controlling multiuser
access to KBs. We were able to more easily enable the reusability of GRKB-Editor than of PERK.
PERK was more difficult to reuse. because it needs to access many of the internal data structures
of a KRS that are not exposed by OKBC. The most powerful result of this work was the OKBC
knowledge model. which is reusable not just across KRSs but also across a range of object-oriented
applications.

We conducted several other engineering efforts during the project. GKB-Editor was enhanced
by providing a spreadsheet viewer and a World Wide Web (WWW) interface. We developed an
initial prototype of a ~conflict arbitration interface™ for the collaboration subsystem of PERK. A
substantial revision of the OKBC specification was undertaken during July 1997. The revision
required us to invest a significant effort in upgrading our KB development tools that not only
included GKB-Editor and Ocelot [PLK97), but also PERK and the collaboration system [KCP99].
These tools were upgraded during the current project.

The results of the project represent a substantial research and development activity. The tools
developed are being extensively used in DARPA’s High Performance Knowledge Bases (HPKB)
project. GKB-Editor is being extensively emploved to enable KB comprehension and reuse. The
KB for project Genoa is being developed using GKB-Editor. OKBC is being used as an API by
several participants in the HPKB program. We expect collaboration capabilities of PERK to be
increasingly important in future projects.

The following publications were prepared under this project.

e Vinay K. Chaudhri and Peter D. Karp. ~Querying Schema Information,” 4th International
Workshop on Knowledge Representation Meets Databases, August 1998 [CK9T].
e Vinay K. Chaudhri.Adam Farquhar. Richard Fikes. Peter D. Karp and James P. Rice.

“OKBC: A Foundation for Knowledge Base Interoperability.” Proceedings of the National
Conference on Artificial Intelligence [CFF*93].

e Alex Borgida, Vinay K. Chaudhri. and Martin Staudt. Report on the 5th International Work-
shop on Knowledge Representation Meets Databases. ACH SIGMOD RECORD. (27)3:10-

15. September 1998 [BCS93].

e “A Collaborative Environment for Authoring Large Knowledge Bases and Ontologies.” A
draft of this paper was prepared under a previous contract from the Air Force Research Lab-
oratory. Under the current contract, the draft was polished for submission to the Journal of
Intelligent Information System, and the corrections requested by reviewers were incorporated
[KCP99].

1 Introduction

In the construction of a new knowledge base (KB), significant productivity gains can be obtained
by reusing existing knowledge components. These components include pieces of domain knowledge
(for example. theories of economics or fault diagnosis) and KB development tools {for example,
editors and theorem provers). To support reuse of domain knowledge. the knowledge sharing
community has undertaken various efforts, including the development of shared portable ontologies
[FFR97] and the development of well-defined languages for knowledge interchange [GGF92]. There
has been. however. less emphasis on the reuse of KB development tools. A significant amount
of effort is invested in building customized tools for specific knowledge representation systems
(KRSs). These tools work only with a single KRS, and the development effort is wasted if the
KRS is no longer used. A KRS developer usually does not have the choice of using off-the-shelf
tools and is forced to develop custom tools.

Open Knowledge Base Connectivity (OKBC) is an application programming interface { API) for
KRSs that has been developed to address the problem of KB tools reusability. The name OKBC
was chosen to be analogous to ODBC (Open Database Connectivityi. as used in the database
community [Gei93].

An API specifies the operations that can be used to access a system by an application program.
When specifying an API for a KRS, some assumptions must be made about the representation
used by that KRS. Such assumptions are made explicit in the ORBC knouledge model. As it can be
too restrictive to enforce the same semantics for all operations in an API across all KRSs. OKBC
supports behaviors to allow for differences among KRSs. Behaviors are a tool to achieve flexibility
in specifying OKBC operations. Thus. the OKBC specification consists of three components: a
knowledge model. a collection of operations to access a KRS. and a collection of behaviors.

A KRS can be bound to OKBC by defining a mapping from OKBC to the native API of
that KRS. To achieve interoperability. a KB tool accesses a KRS using only OKBC operations.
Such a tool is isolated from the peculiarities of the KRS and can be used with any KRS that has
been bound to OKBC. The interoperability achieved by using OKBC is at the level of the OKBC
knowledge model. For example, the OKBC knowledge model defines the concept of a class that
has the same interpretation across all OKBC bindings. OKBC does not guarantee. however. that
a particular class {e.g.. Person) defined in KBs residing in two different KRSs represents identical
concepts.

OKBC is a successor to the Generic Frame Protocol (GFP) [KMG95] and improves upon GFP
in two significant ways. First, OKBC supports a larger class of KRSs because its knowledge
model includes an assertional view of a KRS. provides an explicit treatment of entities that are
not frames. and has a much better way of controlling inference and specifying default values.
Second. OKBC can be used on practically any platform and with a substantially larger range of
applications because it supports network transparency. multiple programming languages, and a
remote procedure language.

We experimented with several KB development tools to test the ability of OINBC to enable the
construction of reusable tools. These tools included GKB-Editor. a graphical tool for browsing
and editing KBs. and PERK, a system for storing KBs in Oracle and for controlling multiuser
access to KBs. We were able to more easily enable the reusability of GKB-Editor, because PERK
needs to access many of the internal data structures of a KRS that are not exposed by OKBC.
The most powerful result of this work was the OKBC knowledge model. which is reusable not just
across KRSs but also across a range of object-oriented applications.

We conducted several other engineering efforts were undertaken during the project. GKB-
Editor was enhanced by providing a spreadsheet viewer, and a World Wide Web (WW W) interface.

Figure 1: The OKBC knowledge model defines that classes and individuals form disjoint partitions
of a KB. It does not commit to whether classes. individuals. slots, and facets are represented as
frames. It also does not commit to whether slots and facets should be represented as classes or

individuals.

We begin this report with a discussion of the technical issues faced in the design of OKBC.
Then we describe the technical enhancements to GKB-Editor and PERK that were undertaken
during this project. Finally. we discuss the ability of OKBC to enable the construction of reusable

tools.

2 OKBC

The OKBC knowledge model is designed to include representational features supported by several
KRSs [Kar92]. It includes constants. frames, slots. facets. classes, individuals, and knowledge
bases. Classes and individuals form two disjoint partitions of a KB (see Figure 1). A class is
defined as a set of entities. Each of the entities in a class is said to be an instance of that class.
An individual is an entity that is not a set.

Any entity has associated with it a collection of own slots. Own slots describe the direct
properties of an entity. For example. if the age of Fred is 42. then age is an own slot of Fred. Own
slots and their values are not inherited. A class has associated with it a collection of template
slots. Template slots describe properties of the instances of a class (own slots of a class describe
the properties of the class itself). Template slots are inherited by subclasses of a class: a template
slot on a class becomes an own slot on each instance of the class.

Own facets describe the properties of slots associated with an entity — for example, cardinality
or range. A template slot of a class has associated with it a collection of template facets that
describe own facets for the corresponding own slot of each instance of the class.

Orthogonal to the knowledge-level distinction between classes and individuals is the notion of
a frame. A frame is a data structure that is typically used to represent a single entity and the slots
and facets associated with it. The decision as to which entities are represented as frames is driven
primarily by implementation considerations; historically. KRSs have made different decisions about
it. The OKBC knowledge model does not legislate which entities are frames (see Figure 1). For
example, in a given KRS. classes may or may not be represented as frames. Even if classes are
generally represented as frames, OKBC allows for a subset of classes not to be represented as
frames. Indeed, it is common for KRSs to exclude unnamed sets, such as {1, 2, 4}, and primitive
data structures, such as numbers and strings, from the set of frames.

The OKBC knowledge model does not legislate whether slots and facets should be represented
as classes or individuals. In some KRSs, a slot (or more generally, a relation) denotes a set of

tuples. In such systems, a slot is therefore also a class. In other KRSs, the spaces of classes
and slots are disjoint. In such systems, a slot is also an individual. As shown in Figure 1, the
knowledge model allows for a slot or a facet to be either a class or an individual.

A KB is a collection of classes, individuals, frames, slots. slot values. facets. facet values,
frame-slot associations, and frame-slot-facet associations and sentences. Multiple KBs may be
represented in a KRS.

OKBC supports operations that apply to specific frames in a KB (for example, querying the
values of a slot of a frame), operations that apply to a KRS but not to any specific KB (for
example. getting a list of all the KBs defined using a specific KRS), and operations that apply
neither to a KRS nor to a KB (for example, establishing a connection to a knowledge server).

Although GFP was successfully used in several projects at Stanford University’s Knowledge
Systems Laboratory (KSL) [FFR97. FIFB96] and at SRI International [PLK97, KRPPT96], it
lacked the power and flexibility needed in a generic API. Most of the enhancements considered
here address the deficiencies encountered while GFP was used at KSL and SRI. In the rest of this
section, we describe those enhancements.

2.1 Support for assertions

GFP was found to be inadequate for use with KRSs that prefer to view a KB as a collection
of logical sentences. as well as systems that have a knowledge model more expressive than the
knowledge model of GFP. To address these problems. we introduced a tell/ask interface that
supports an assertional view of a KB.

The design approach for supporting OKBC was analogous to the one adopted in KRYPTON
(BFL83]. An OKBC KB supports two alternative and isomorphic views of a KB: a frame-oriented
view and an assertional view. (The frame-oriented view was called the terminological component in
KRYPTON.) While defining the assertional view of a KB. we took a lowest common denominator
approach: an assertion language with an expressive power roughly equivalent to an object-oriented
frame language is defined. For other assertions. support is provided. but no portability claims are
made.

2.1.1 Assertion language

OKBC defines an assertion language {AL) for declarative specification of knowledge. The AL is
a first-order language with conjunction and predicate symbols. but without disjunction. explicit
quantifiers. function symbols, negation. or equality. The predicate svmbols of the OKBC AL
are class. individual, primitive. instance-of. type-of, subclass-of. slot-of. facet-of.
template-slot-of, template-facet-of, own-slot-value. ovn-facet-value,
template~slot-value, and template-facet-value. For example, (instance~of John Person)
means that John is an instance of the class Person. For convenience. (instance-of John Person)
may be written as (Person John).

A well-formed formula (WFF) of the AL is an atomic formula constructed by enclosing one
of the predicate symbols followed by a number of terms in parentheses. The terms of the AL are
constants and variables. The conjunction of two WFFs of the AL is a \WFF.

OKBC provides the tell, ask. and untell operations to query and update a KB using the AL.
OKBC guarantees only that ground WFFs can be telled or untelled. Any WFF may be asked.

OKBC specifies the effect of telling any WFF of the AL to a KB by identifying an equivalent
set of OKBC operations that does not include tell. For example. the operation (tell (instance~of

frame class)). which asserts frame to be an instance of class, is equivalent to the operation (add-
instance-type frame class). Asking any WFF of the AL is similarly equivalent to a set of
OKBC operations not including ask. For example. the operation (ask (instance-of 7x class)) is
equivalent to the operation (get-class-instances class).

2.1.2 Assertions not guaranteed to be supported by OKBC

To handle assertions outside of the AL, OKBC defines the operations tellable and askable. The
OKBC operation tellable determines which sentences may be acceptable to tell for a specific
KB. Before using tell with an arbitrary formula. an application can check whether a formula is
tellable. If the formula is not tellable, the application cannot safely assert that formula using
tell.

For example, consider the WEFs (age John 30) and (friend John Sally). It is straightfor-
ward to assert them using either tell or add-slot-value. An application may, however. wish to
assert the disjunction. (or (age John 30) (friend John Sally)). which is not a WFF of the AL.
An OKBC binding for a KRS is free to accept this formula. and an application can check for this
by using the tellable operation. If a formula is tellable for a KRS, the tell operation can be
used to communicate that formula to the KRS. Using this mechanism. a kB may accept formulae
that contain quantifiers. functions. or higher-arity predicates.

There is no equivalence between using tell with arbitrary formulae and a set of OKBC oper-
ations that do not use tell. Use of such formulae may, therefore. not be portable across different

OKBC bindings.

2.2 Handling entities that are not frames

As discussed above, KRSs make different assumptions about which entities are represented as
frames. These differences influence the semantics of operations that systematically process frames
in a KB (for example. get-kb-frames. get-kb-individuals. get-kb-classes that respectively
return all the frames. classes, and individuals in a KB). These operations could be specified by
saying that they respectively return all the frames. classes. and individuals in a KB. Because of
differences in which entities are represented as frames, this simplicity can be deceptive.

2.2.1 Not all entities are frames

As shown in Figure 1. not all classes in a KB are necessarily represented as frames. Given such
differences, it is not obvious how to define the operation get-kb-classes. Should it return only
those classes that are frames? Should it return all sets in a KB?

Returning only those classes that are frames is a problem for KRSs that do not represent all
classes as frames. Some of the non-frame classes can be important to a client application. Defining
get-kb-classes to return all the sets is also problematic because the results of one OKBC operation
cannot necessarily be passed to another operation. making an application program more complex.
The complexity occurs because it is generally not possible to perform operations such as creating
slots and adding slot values to entities that are not frames. Thus, if get-kb-classes were to return
classes that are not frames, an application program would need to identify those classes that are
not frames and treat them differently. A possible solution to this problem is to require a KRS to
appear as if it represents every class as a frame. This is not reasonable, however. because it is
unnatural and can make the implementation extremely inefficient.

To address this problem, we introduced an extra argument. selector, to get-kb-classes and
similar operations. When the value of selector is :frames, only those classes that are frames are

returned, and when its value is :all, all classes are returned. For a system in which all classes are
represented by frames, get-kb-classes returns identical results for these two values of selector.
We expect many applications to use :frames as a value for the selector argument, because it
has the desirable property that the union of get-kb-classes and get-kb-individuals equals the
result of get-kb-frames. A third legal value for this argument is :system-default, which gives
a KRS the freedom to use the most efficient or natural method of computing get-kb-classes.

2.2.2 Not all entity categories are frames

As shown in Figure L. not all KRSs represent all categories of entities as frames. Consider two
KRSs: IKRS1. which represents slots as frames, and KRS2. which does not. Furthermore. consider
KBI, stored in KRS1. and KB2, stored in KRS2, which were created using identical sets of OKBC
creation operations. Calling an operation such as get-kb-frames will return different results on
KBI1 and KB2. This may make it more difficult for an application to work portably with both KBs.
but it is acceptable if OKBC provides a mechanism to detect the difference. The :are-frames
behavior allows a KRS to indicate which categories of entities are represented as frames.

The values of the :are-~frames behavior constitute a set of keywords: :class. :slot. :facet.
and :individual. If the values of :are-frames contain an entity category. it implies that frames
may be used to represent them. In most KRSs. classes and instances of those classes are represented
as frames. and therefore we expect the most common set of values for :are-frames to be at least
{:class. :individual}. If two KRSs have different values for the behavior :are-frames. we can
expect to get a different list of frames by executing get-kb-frames on these KBs.

2.3 Systems that do not support named frames

Many KRSs. for example. LOOM [MB91] provide unique symbolic names for every frame in a
KRS. Other KRSs. for example. Ontolingua [FFR97], require unique object identifiers in a KB.
but not unique symbolic names. Still other KRSs allow for anonymous frames [FIFB96]. A KRS
may advertise the support for frame names by the :frame-names-required behavior. When the
value of the :frame-names-required behavior is frue, it means that each frame in the KRS has a
name, each frame name is unique in the KB. and the frame name supplied at the time of creating a
frame can be used at a later time to locate that frame. When the value of : frame-names-required
is false, frames are not required to be named, and a frame name. if supplied. may not necessarily
be unique in a KB. One may not be able to locate a frame unambiguously by using the name that
was supplied when the frame was created.

Any portable application whose behavior depends on the existence of unique frame names
should first query the value of the :frame-names-required behavior and. if it is found false.
should provide an alternative implementation for functionality that depends on frame names.

2.4 Controlling KRS inference

One area in which KRSs differ widely is in the inference mechanisms that they support and in
the methods available to control the inference mechanisms. It is critical for applications to have
some means of controlling the type and cost of inferences that a KRS performs in response to a
retrieval operation. Unfortunately. there is not yet widespread agreement on either the inference
mechanisms or the parameters used to control them. This makes it impossible for OKBC to
provide a rich KRS-independent method for controlling inference. Instead, OKBC provides a
restricted method for specifying which inferences should be performed in retrieval operations, as

well as methods for a KRS to indicate the degree to which the specifications have been satisfied.
OKBC does not provide means to specify limits on computing time in performing those inferences.

OKBC retrieval operations support an inference-level argument that takes one of the three
values: :direct. :taxonomic, or :all-inferable. When inference-level is :direct, at least
the directly asserted nonredundant values are returned. When inference-levelis :taxonomic, at
least the directly asserted and inherited values are returned. The inherited values are computed
using at least the taxonomic inheritance axioms defined by the knowledge model. For example, a
taxonomic inheritance axiom for slot values states that if a template slot S of a class C has value V.
then for all instances of C. the own slot S has value V, and for all subclasses of C, the template slot
S has value V. Similar inheritance axioms are defined for facet values. and for the class/subclass
and class/instance relationships. When inference-level is :all-inferable. values inferable by
any means supported by the KRS are returned. including any values inferable at the :taxonomic
inference level.

With an inference-level value of :direct. returning exactly the directly asserted values may
impose a high burden on some systems. such as forward chaining systems that do not maintain a
distinction between directly asserted and inferred values. To permit flexibility in such cases, we
use the following two techniques.

First. the inference-level argument defines the lower bound on the values that may be re-
turned. For example. when the inference-level is :direct. at least the directly asserted values
are returned. but a KRS is not prevented from returning additional values. Second. any OKBC
operation accepting the inference-level argument returns two additional values. called exact-p
and more-status. The value of exact-p is true if it is known that exactly the :direct (or
:taxonomic) values are returned. An OKBC implementation that always returns false as the
value of exact-p is compliant. The value of more-status is either false. which indicates that
there are known to be no more results. or :more. which indicates that there may still be more
results but the KRS was unable to find out how many more. or an integer. which indicates how
many more values exist.

By specifving the inference level in terms of the lower bound on the result and returning two
additional values. exact-p and more-status. we were able to permit flexibility in the specification
and also be accurate.

2.5 Handling defaults

In the absence of any widely accepted model of defaults [BDK97]. OKBC incorporates only simple
provisions for default values of slots and facets. Template slots and template facets have a set of
default values associated with them. Intuitively. these default values inherit to instances unless the
inherited values are logically inconsistent with other assertions in the KB. the values have been
removed. for example. at the instance, or the default values have been explicitly overridden by
other default values. OKBC does not require a KRS to determine the logical consistency of a KB.
nor does it guarantee a means of explicitly overriding default values. Instead, OKBC leaves the
inheritance of default values unspecified. That is, no requirements are imposed on the relationship
between default values of template slots and facets and the values of the corresponding own slots
and facets. The default values on a template slot or template facet are simply available to the
KRS to use in whatever way it chooses when determining the values of own slots and facets. The
slot or facet values that are not default values are referred to as “known true” values. Operations
on slot and facet values take a value-selector argument that allows a user to choose between

only default values and monotonic (“known true”) values.

2.6 OKBC compliance

Many OKBC back end implementors are interested in implementing only a subset of the func-
tionality specified by OKBC. Two such examples are the CLIPS back end being developed at the
Section of Medical Informatics (SMI) at Stanford. and the plan monitoring system being developed
by Jon Dovle at MIT.

We studied the requirements of Jon Doyle’s plan monitoring system. It is a system with
fixed schema — that is. no schema changes are allowed. The systems with fixed schema form a
useful class of applications. because schema changes are inherently difficult, and many systems
choose not to deal with them. Motivated by this. we have proposed a new compliance class called
:fixed-schema. Adding a new compliance class means allowing an additional legal value for the
behavior :compliance. No new operations need to be added.

An application that wishes to be compliant in the fixed schema compliance class will specify
:fixed-schema as one of the values of the :compliance behavior. For an OKBC implementation
to be compliant in the :fixed-schema class. none of the schema change operations is required. A
system compliant in the :fixed-schema class. however. is free to implement any schema change
operations it wishes to support. The :fixed-schema compliance class reduces the number of
mandatory methods that need to be implemented for full compliance.

The :fixed-schema compliance class is more general than the :read-only compliance class.
because it allows updates on slot and facet values that are not permitted under the :read-only
compliance class. But it is not more general than the :monotonic compliance class. as retractions
are allowed but new schema information cannot be added. The inclusion relationships between
various compliance classes are shown in Figure 2.

The :fixed-schema compliance class was presented at the meeting of the OKBC working group
held in conjunction with the December 1997 meeting of the HPKB program. where concerns were
expressed regarding the way compliance classes are currently specified. The current specification
allows a compliance class to be flexible by allowing more operations than it promises. For example.
asystem in the :fixed~schema compliance class is defined to support at least those operations that
do not involve any schema change. The :read-only compliance class is defined analogously. that
is. the system supports at least all the read-only operations. Such specification allows flexibility.
but it makes the behavior of a system in a compliance class less predictable. For example, a
system in the :read-only compliance class may support updates. The relative merits of these
two specifications remain unexplored.

2.7 Support for polymorphism

The Interface Definition Language (IDL) supported by CORBA supports slot polymorphism, that
is, it allows two slots representing different things. but belonging to different classes. to have the
same name. For example. the slot “sharpness™ can mean taste of food for a class of foods, as well
as the sharpness for a class of knives. OKBC handles such cases by requiring an implementor to
set the :frame-names-required behavior to false. In IDL. slot names are not necessarily unique.
but slots can be uniquely identified in the context of a frame. Furthermore, frame names are
always unique. Therefore. the current solution offered by OKBC is inadequate for IDL.

Since IDL is being actively used in DARPA’s JFACC program. we undertook a preliminary
investigation to provide support for polymorphism. OQur solution requires three extensions to the
OKBC specification.

1. Generalizing the value of :frame-names-required behavior

User—defined
Facets

N\

Read-Only

Full compliance

Figure 2: Inclusion relationship among compliance classes

10

(]

Recall that the :frame-names-required behavior allows a KRS to advertise its support for
frame names. In the current design, when the value of :frame-names-required is true,
each frame is required to have a name, each frame name is unique in the kB, and the frame
name supplied at the time of creating a frame can be used at a later time to locate the
frame by using coerce-to-frame until changed by put-frame-name. When the value of
:frame-names-required is false. frame names are not required, and may be nonunique in
a KB. One may not be able to locate a frame by using the name that was supplied when the
frame was created.

In the proposed design, the :frame-names-required behavior should have values from the
set of entity types: :class, :individual, :slot, :facet. If an entity type is a value of
this behavior. frame names are required for the frames of that entity type.

For IDL. one can set :frame-names-required to {:class, :individual}. Class frames
and individual frames will be required to have unique names, but slots and facet frames may
not have unique names.

. Introducing a new behavior :coercion-type

The new behavior :coercion-type will specify how an OKBC implementation coerces the
frame. slot, and facet arguments. The behavior can have three values.

e :none - Arguments are not coerced.

e :with-context - A slot argument is coerced in the context of frame. The context of
coercion is discussed in more detail below.

e :non-context - All arguments are coerced without any context. So. slot name is
coerced to a slot without the frame context. This setting makes sense only when frame
names are required for all entity types.

The context of coercion is specified by an additional argument to coerce-to-slot operation.
For example.

(coerce-to-slot ’slot-1 :context cl :slot-type :template :error-p nil)
#<slot slot-1 in ci>
T

When :coercion-typeis :with-context. an application does not have to necessarily supply
slot handles or slot objects as a value for the slot argument. thus providing a natural support
for slot name polymorphism.

. Adding a context argument to coerce-to-slot operation

The operation coerce-to-slot will take a frame argument. When a frame argument is
supplied. the slot object or slot handle representing that slot in the given frame is returned.

With the frame argument, one can invoke the operations

(coerce-to-slot ‘‘S’’ :frame ‘‘A’’)
(coerce-to-slot fS’’ :frame ‘‘B’’)

11

and get different results, which will be the slot object or slot handle representing the slot
“S” in the two frames.

If the :frame-names-required does not contain :slot as a value, the above coercion will
be required to work, but not the following coercion:

(coerce-to-slot ‘‘S’’)

The acceptability of the above proposal is yet to be seen. and remains open for future work.

2.8 Checking constraints

Many KRSs provide runtime slot-value constraint checking. Each time a slot value is changed
(either locally. or through a change to inherited values), the KRS evaluates constraints that have
been defined by the user to specify what values are allowable for a given slot.

Constraint checking is described by two behaviors: :constraint-checking-time controls
when constraint checking should be performed. and :constraint-report-time controls when
constraint violations should be reported to the user. as follows.

Allowable values of :constraint-checking-time are

e :immediate — Constraints are checked as soon as any sideeffect causing OKBC operation
is executed.

o :deferred — Constraint checking does not occur when a sideeffect causing OKBC opera-
tion is executed. but is delaved until either the check-constraints operation is executed
explicitly or the constraint-checking-type is changed to :background or :immediate.

e :background — Constraint checking is performed as a background process. Violated con-
straints may be retrieved using the get-pending-constraint-violations operation.

e :never — Constraints are never checked.

OKBC allows control of the constraint checking facilities provided by the underiying KRS. A
KRS defines a :constraint-checking-time behavior, whose value is a list of possible constraint
checking policies including :immediate, :deferred. :never. and :background. The operation
check-constraints may be used to trigger constraint checking, and set-constraint-checking-
time may be used to modify the policy, if allowed by the KRS.

For systems that support deferred constraint checking. we propose the following OKBC op-
erations. If any of the following operations is invoked on a system that does not support user-
controlled constraint checking, it does not have any effect when error-p is nil. and returns an

error when error-p is true.

set-constraint-checking-time checking-time &key kb error-p kb-local-only-p

Using set-constraint-checking-time. a user can query or update the time of constraint
checking. The valid values for checking-time are :immediate, :deferred, :background, and
:never. When error-p is t. an error is signaled when called with an unsupported value of

checking-time.

get-constraint-checking-time &key kb error-p

The get-constraint-checking-time operation returns the current value of constraint checking
time.

check-constraints &key frame slot facet kb (checking-time :now) (error-reporting-
time :immediate) (error-p t)

The check-constraints operation initiates the checking of constraints in the kb. If the frame
argument is specified, only those constraints are checked which are attached to that frame. The
constraints attached to a frame are either those expressed using the facet mechanism or the
ones that are explicitly attached to that frame in a tell operation. If the slot argument is
specified, constraints on only that slot are checked. If the facet argument is specified. only that
facet constraint is checked. Any combination of frame. slot. and facet may be specified for
better control of constraint checking. For example, if slot and facet are supplied. for all frames
in the KB. slot is checked for the constraint specified by facet. The checking-time can be
:now or :background. If the checking-time is :background. a background process may be
initiated to check the constraints on an ongoing basis. The constraint violations are signaled as
condition objects (see below). The possible values for error-reporting-time are :immediate
and :deferred. If :error-reporting-time is :deferred. constraint violations are stored for
later access using the OKBC operation get-pending-constraint-violations described later. If
checking-time is :background. :error-reporting-time defaults to :deferred. The error-p
argument is used to control the behavior of check-constraints in case any error other than
constraint violation is encountered.

with-deferred-constraint-checking &key frames slots facets kb &body body
This macro is equivalent to the following:

(let ((constraint-checking-time (get-constraint-checking-time)))
(unwind-protect

(progn

(set-constraint-checking-time :checking-time :deferred ...)
body

(check-constraints :checking-time :now ...})

(set-constraint-checking-time :checking-time constraint-checking-time))})

It evaluates the forms in body by switching off the constraint checking. At the end of the
execution of the body. the constraints are checked. The arguments frames, slots, and facets
have the effect as described with the check-constraints operation. On exit from the macro. the
current value of constraint checking time is restored to its original value.

After working with the KB for some time. a user may want to determine the pending constraint
violations. To return pending constraint violations. we propose the following OKBC operations.

get-pending-constraint-violations &key kb

Pending constraint violations is the set of violations that were detected at the time of exe-
cuting a previous check-constraints operation or any violations discovered by the background
constraint checking process. The function returns a list of condition objects representing the

pending constraint violations.

remove-pending-constraint-violations &key condition-object kb

13

This operation removes the condition-object from the list of pending violations. If condition-
object is nil. all pending violations are removed.

When a constraint is violated, KRSs usually signal conditions. We propose three kinds
of conditions to signal constraint violations: comstraint-viclation. valuetype-violation,
and cardinality-violation. The most general kind of signal for constraint violation is the
constraint-violation condition. LOOM detects constraint violations only when slot values
are added using the functions set-value and fset-value. When slot values are added using
telil or tellm. a constraint violation is signaled by displaying a warning. Classic has an exten-
sive set of conditions that are signaled whenever there is a constraint violation. For example,
an inconsistent-interval-conflict condition is signaled when a host concept has an incon-
sistent interval (i.e.. the value of the :numeric-minimum facet is greater than the value of the
:numeric-maximum facet).

We propose that all update OKBC operations should signal an appropriate condition when-
ever an error is encountered. For example, if add-slot-value operation violates a maximum
cardinality constraint. the maximum-cardinality-violated condition should be signaled. OKBC
conditions are objects that in case of constraint violation contain the frame. slot, value. and an
informational message describing the error.

We believe that conditions provide a useful service to the user. and therefore. we should
expand the current set of conditions that are signaled when a constraint is violated. We propose
to define a condition for each facet. For example. when the :same-values facet is violated. the
:same-values-violated condition is signaled.

The constraint checking operations proposed here are not yet part of the OKBC specification.
We need to spend more time studying their properties and acquire some experience in using them
before they can be considered ready for inclusion in OKBC.)

2.9 Comparing OKBC knowledge model with object-oriented databases

Even though the OKBC knowledge model is not as expressive as many knowledge representation
languages. it supports many features not yet common in database systems. For example. schema
information can play an important role for formulating a query and while information is retrieved
from multiple sources. Yet, most database systems have a primitive support for querving the
schema information. We undertook a small study to compare the schema querying capabilities
supported by OKBC to those found in object-oriented databases.

2.9.1 Schema queries in OKBC

OLKBC defines a collection of methods to query schema information. These methods can be
classified into three broad categories: taxonomic queries. frame structure queries, and constraint
queries. A fourth class of schema queries is the class comparison query which was supported in
GFP but was dropped from OKBC (for the reasons explained below). Table 1 lists a subset of
OKBC/GFP methods in each category. :

The tazonomic queries allow us to query the class-subclass relationships. For example,
get-class-subclasses allows us to determine all the subclasses of a class. The root classes can
be determined using get-kb-root-classes.

The frame structure queries retrieve the slots and facets associated with a frame. For example,
get-frame-slots returns all the slots associated with a trame. (A formal definition of what it
means for a slot to be associated with a frame can be found elsewhere [CFF+97].)

14

GFP Method] Brief Description
Taxonomic Queries
get-class-subclasses Returns a list of direct subclasses of a class
get-class-superclasses | Returns a list of direct superclasses of a class
get-root-classes Returns a list of those classes that have no superclass
Frame Structure Queries
get-frame-slots Returns a list of all the slots of a frame
get-frame-facets Returns a list of all the facets of a frame
Constraint Queries
get-facet-value Returns the value of a facet
get-slot-facets Returns the list of facets applicable to a frame
Class Comparison Queries
equivalent-p Given classes class! and class?, returns true when the ex-
tensions of classl and class2 are the same
consistent-classes-p Given classes classl and class2. returns true if an instance
could satisfy the definition of both classes simultaneously
class-disjoint-p Given classes classl and class2, returns true if they are
incompatible. that is. an instance could not satisfy the
definition of both classes simultaneously

Table 1: Querying Schema Information by Using OKBC/GFP

The constraint queries allow us to query the facet information. As stated earlier. facets are
used to represent constraints on slot values. Currently supported facet names are :VALUE-TYPE,
:CARDINALITY. :MINIMUM-CARDINALITY, :MAXIMUM-CARDINALITY, :INVERSE.:NUMERIC-MINIMUM.
:NUMERIC-MAXIMUM, : SAME-VALUES. : SOME-VALUES. :NOT-SAME~-VALUES. : SUBSET-0F-VALUES, and
:COLLECTION-TYPE. an informal definition of the facets is shown in Table 2.9.1. More formal def-
initions of facets are available elsewhere [CFF*97]l. By using get-facet-values on the facets
:numeric-minimum and :numeric-maximum. the range constraints on a slot can be obtained.

The class comparison queries support the inferences usually available only in description logic
systems, such as LOOM [Mac91] and Classic [BBMRS9!. For example, equivalent-p returns
true for two classes classl and class2 when the extensions of classl and class2 are the same. The
class conmparison queries were dropped from OKBC, because at that time it was not clear to us
how to specify portable definitions for these queries. In fact. it is straightforward to structurally
define these operations by simply considering the class definitions: equivalent-p can examine
the definitions of two classes and determine if they are equivalent in the sense that they have the
same slots, slot values. facets, and facet values. The structural definition of equivalent-p gets
around the need to make guarantees about the complete extension of a class, and returns a result
based on the schema information explicitly asserted in the KB.

2.9.2 Enhancing a database query language to query schema

We believe that a database query language should provide natural support for the four classes of
queries considered in the previous section. We first briefly discuss the schema queries supported in
the current relational database management systems (DBMS) products and then propose a scheme
to enhance the Object Query Language (OQL) to support schema queries. (OQL is commonly

15

Facet Name

Description

:VALUE-TYPE

: INVERSE

:CARDINALITY

:MAXIMUM-CARDINALITY

:MINIMUM-CARDINALITY

:SAME-VALUES

:NOT-SAME-VALUES

: SUBSET-0F-VALUES

:NUMERIC-MINIMUM

:NUMERIC-MAXIMUM

: SOME-VALUES

: COLLECTION-TYPE

A value C for facet :VALUE-TYPE of slot S of frame F means that
every value of slot S of frame F must be an instance of the class C.
A value S2 for facet : INVERSE of slot S1 of frame F means that if
V is a value of S1 of F, then F is a value of 52 of V.

A value N for facet :CARDINALITY on slot S on frame F means that
slot S on frame F has N values.

A value N for facet MAXIMUM-CARDINALITY of slot S of frame F
means that slot S of frame F can have at most N values.

A value N for facet MINIMUM~CARDINALITY of slot S of frame F
means that slot S of frame F has at least N values.

A value S2 for facet ;: SAME-VALUES of slot S1 of frame F. where §2
is a slot, means that the set of values of slot S1 of F is equal to the
set of values of slot §2 of F.

A value S? for facet :NOT-SAME-VALUES of slot S1 of frame F, where
S2 is a slot. means that the set of values of slot S1 of F is not equal
to the set of values of slot S2 of F.

A value S2 for facet :SUBSET-OF-VALUES of slot S1 of frame F,
where S2 is a slot. means that the set of values of slot S1 of F is a
subset of the set of values of slot S2 of F.

A value N for facet :NUMERIC-MINIMUM on slot S on frame F means
that the minimum value of slot S on frame F is N.

A value N for facet ;NUMERIC-MAXIMUM on slot S on frame F means
that the minimum value of slot S on frame F is N.

A value V for own facet :SOME-VALUES of own slot S of frame F
means that V is also a value of own slot S of F.

The :COLLECTION-TYPE facet specifies whether multiple values of
a slot are to be treated as a set. list. or bag.

Table 2: Facets Supported by OKBC

16

interface Person

(extent People)

{
attribute String name;
attribute Struct Address {Short number, String Street} address;
relationship Person spouse inverse Person::spouse;
attribute Integer age;
relationship Set<Person> children inverse Person::parents;
relationship List<Person> parents inverse children;

Table 3: A Sample Class Definition

Table 4: Example Constraint Queries. The NUMERIC-MINIMUM facet cannot be determined using
the schema of Figure 2.9.2.

Query Expected Result
select facet(p.name, value-type) from person p string

select facet(p.spouse, value-type) from person p Person

select facet(p.children, value-type) from person p Set<Person>
select facet(p.children, collection-type) from person p | List

select facet(p.children, inverse) from person p parents
select facet(p.age, numeric-minimum) from person p 0

adopted by object-oriented databases.)

The analog of a frame structure query such as get-frame-slots for a relational DBMS is to
obtain a list of all the attributes of a relation. Traditionally, such queries have been answered
by using the information in the data dictionary of a DBMS. The analog of a constraint query
such as get-facet-value is to obtain the key of a relation or to obtain constraints attached
to a relation. Even though constraint queries can be answered by querying the dara dictionary.
the current products do not offer the flexibility we propose. For example. in Oracle DBMS, it
is possible to query the constraints associated with a table. but those constraints are returned
as a string. Thus, if the numeric value of an attribute Cost was restricted to a positive integer.
we will be returned the string “Cost > 0”. We then need to parse the result to determine that
it represents a :numeric-minimum facet of OKBC. The class comparison queries are outside the
scope of relational DBMSs. Thus. RDBMSs support only a subset of schema queries that are
useful for querying multiple sources.

Release 1.2 of OQL did not provide any support for taxonomic queries [Cat93]. To some extent.
the problem will be rectified in the upcoming Release 2.0 of ODMG [Cat97], as the new data model
includes a class MetaObject that has a relation called DefiningScope that will allow OQL to query
the class-subclass relationships.

A possible way to incorporate taxonomic queries in OQL is to view each class relationship as a

17

relation as proposed in XSQL [KKS92]. For example, the following XSQL query allows a variable
to range over a class. XSQL syntax uses #X to distinguish the variables that range over classes.

SELECT #X WHERE Person subclassOf #X

The above query returns all the subclasses of the class Person. Each OKBC method corre-
sponding to taxonomic queries can be represented as a relation in an OQL query to provide a com-
prehensive support for querying the schema information. For example, get-class-superclasses
can be represented by the relation superclassOf. Then the following query returns all superclasses

of a class.
SELECT #X WHERE #X superclassOf Person

A similar technique can be used for supporting frame structure queries if we allow #X to
represent a variable that ranges over attributes. For example, if we assume that the relation
attributeOf represents the association of an attribute with a class, then the query

SELECT #X WHERE #X attributeOf Person

returns all the attributes of the class Person. Alternative syntax for querying slots is possible
[LSS96]. and investigation of the relative syntax merits is left open for future research.

Release 2.0 of the ODMG standard has limited facilities for querying the constraints on schema.
It provides the method getCardinalityto determine the cardinality of a relationship. We believe
that more facilities should be provided to query constraints on an attribute or a relation. In OKBC.
the constraints are represented using facets. The ODMG data model does not support cardinality
and range constraints. which is unfortunate because they can be extremely useful in optimizing
queries in a heterogeneous database environment.

A possible approach to support queries on constraints is to define a method called facet that
can be invoked during the OQL queries. For example. consider the class definition shown in
Figure 2.9.2. Given the definition of Person. we show some sample queries and their expected
results in Table 2.9.2.

The method facet can be system generated when the schema is compiled. We believe that the
ODMG data model should be extended to incorporate a larger set of constraints on the attribute
and relationship values. The range and cardinality constraints supported by OKBC are good
initial candidates for inclusion in the ODMG data model.

To incorporate the class comparison queries in OQL. an approach similar to the one for other
queries can be used. We can introduce a relation corresponding to each type of class comparison
inference. For example, if consistentWith represents a relation that holds between two classes that

are consistent. the query
SELECT #X WHERE Person consistentWith #X

returns all the classes that are consistent with the class Person.

In summary, we believe that the schema queries can be extremely useful to support query
formulation and provide information for query optimization. We identified four classes of schema
queries that we have found useful while designing an API for KRSs: taxonomic, frame structure,
constraint. and class comparison. We believe that if direct support for the four classes of schema
queries identified here is provided in OQL. it will be a more powerful mediator language.

18

3 GKB-Editor

GKB-Editor was the driving application for the development of GFP. We upgraded GKB-Editor
to use OKBC. Our initial goal of the project was to implement GFP bindings for several KRSs.
With the adoption of OKBC by the HPKB project, several research groups developed OKBC
bindings of their own (discussed later in the report), and therefore, we did not find it necessary to
duplicate the work. In this report. we only describe our experience in reusing GKB-Editor with
Ontolingua. We also discuss the spreadsheet and WWW interfaces to GKB-Editor.

3.1 Reusing GKB-Editor with Ontolingua

We tested the reusability of GKB-Editor with Ontolingua. the ontology server from KSL Stanford.
Two main problems were encountered in the process: Ontolingua does not support unique symbolic
frame names. and some of the browsing operations were found to be too slow over the network.

GKB-Editor relies heavily on the unique symbolic frame names for its operation. All the KRSs
for which we have used GKB-Editor so far have supported unique symbolic frame names. Ontolin-
gua. however. does not make this assumption. GKB-Editor can detect this difference by querying
the value of the :frame-name-required behavior. Recall that the behaviors are a mechanism
supported by OKBC. To address this problem. we extended GKB-Editor to use fictitious frame
names whenever the frame name is nil and the :frame-name-required behavior is false. We
expect that the use of fictitious names can be a general technique for porting OKBC-based soft-
ware that was initially developed for a system with a value frue for the :frame-name-required
behavior to a system with a value false for this behavior.

While using GKB-Editor with Ontolingua. we found that some of the browsing operations
were too slow. This occurs because while displaying a KB. GKB-Editor invokes numerous OKBC
operations. each of which results in a network call. A possible solution to this problem is to
use the procedure language of OKBC and combine several OKBC operations into one procedure
that can be evaluated in just one network call. We used the following implementation strategy
to incorporate procedures in GKB-Editor: Before starting a browsing task, predict the OKBC
operations that will be invoked to perform that task, execute them in a procedure, and cache
their results. When the same operations are invoked during the browsing task. no network calls
are necessary because the results are already cached. This strategy required minimal rewriting of
GKB-Editor. and was used to speed up some of the commonly used operations such as invoking
the taxonomy editor or invoking the frame editor.

In spite of significant effort invested in speeding up the operation of GKB-Editor to work over
the network with Ontolingua, the response time of many operations still remained quite slow.
This suggests that it may not be always feasible to retrofit a legacy application to work using
network OKBC. If an application is designed with the objective of network operation, most of its
functionality can be embedded in the OKBC procedure language. ensuring a fast runtime response.
This was not the case with GIKB-Editor. This experience also suggests that a network API for the
knowledge server should use operations that are more coarse grained than the OKBC operations.
Otherwise. the network overhead of invoking OKBC operations can be excessive, reducing its
practicality.

In summary, our ability to use GKB-Editor with Ontolingua is a testimonial to the ability
of OKBC to enable the construction of reusable tools. The experience also suggests that an
application designed to run across the network needs a coarser API than that offered by OKBC.

19

3.2 Spreadsheet Viewer for GKB-Editor

Spreadsheet programs can present large volumes of information very compactly. They also have
analytical capabilities such as statistical functions, and histogram and pie-chart displays. Several
users requested such functionality. Therefore, we undertook interfacing GKB-Editor to a spread-
sheet program to allow the slot values from multiple frames to be viewed and analyzed within a
spreadsheet.

Our initial plan was to employ a commercial spreadsheet program. for Unix, called eXclaim
from Unipress. Inc. This product has a programmatic interface that allows dynamic importing
of new data via interprocess communication. Our initial evaluation showed that eXclaim has
several shortcomings for our work. For example. in eXclaim, it is not possible to protect certain
spreadsheet cells to display the column headings. It is not possible to change the spreadsheet
menus using the APIL Import and export of data from GKB-Editor works using text files and
is inefficient. While loading the data into the spreadsheet. it is not possible to execute any
initialization commands. For example. if one wants the data values to be displayed in a certain
way at start-up time. it cannot be done. It is not possible to get rid of unnecessary menu options.
Because of these problems. we looked for alternative spreadsheet software and found that NExS.
the Network Extensible Spreadsheet from X Engineering Software Systems. met most of our needs.

NExXS was originally developed for Unix workstations and provides an easy-to-use graphical
user interface that is fully compatible with X Windows and Motif. NeXS can deal with data sheets
of 32,767x4.096 columns. has more than 237 built-in scientific programming functions, and has a
worksheet that can be formatted on a cell-by-cell basis. It is available for a price ranging from
$149 to $249. depending on individual needs.

During this project. we developed a functional NeXS/GKB-Editor interface. The user invokes
the spreadsheet viewer on a specified class, causing all instances (or subclasses) of that class to be
exported to a spreadsheet. The user can select whether all. or only a subset, of the slots within
those frames are exported to the spreadsheet. select the order in which the instances should be
displaved and define whether to display the superclasses of a frame. Slots form the columns of
the spreadsheet. and frames form the rows. In a simpler case. the values of single-valued slots fill
individual cells of the spreadsheet.

While interfacing NeXS to GKB-Editor, we faced several engineering difficulties. For example.
Allegro Common Lisp. version 4.3, running under Solaris. supports only shared libraries. NeXS
was not shipping shared libraries until we made a special request to do so. While exiting from a
spreadsheet. NeXS writes out the data to a file. We changed its exit function so that the data
is sent back to GKB-Editor and not to a file. We also revised the distribution procedure for
GKB-Editor so that the NeXS libraries are transparently loaded at the user sites.

We did some preliminary experiments to estimate the speed of data transfer between NeXS
and GKB-Editor. To transfer 600 frames from GKB-Editor to NeXS. while running with LOOM.
takes about 1 seconds. We believe this is an adequate speed for the transfer of data between
GKB-Editor and the spreadsheet.

In our future work with the spreadsheet viewer. we plan to deal with multivalued slots. Mul-
tivalued slots are complicated since it is not clear how to map multiple values of a single slot into
the cells of the spreadsheet. We have experimented with several approaches — placing all values
in a single cell in separate lines, allocating additional spreadsheet rows to show multiple values,
and placing only the first value in a cell but allowing the user to inspect all values in a second
spreadsheet window that is invoked through a mouse-click. At present, we are able to transfer
the data from GIKB-Editor to the spreadsheet, but are not able to save the updated data back to
GKB-Editor. In future, we plan to support the import of updated values back into the KB.

3.3 WWW Interface for GKB-Editor

The WW1W interface of GKB-Editor was undertaken to enable users to utilize the editor on
virtually any platform without requiring any software installation. Making GKB-Editor available
in this fashion would also make it easier for multiple groups to collaborate in developing a KB or
ontology. Under this contract, we produced a prototype read-only implementation of the WWW
interface of GKB-Editor.

The WWW implementation uses CWEST (CLIM-WWW Server Tool. pronounced -quest™).
a toolkit developed at SRI for retrofitting existing CLIM applications to run over the WWW, and
CL-HTTP. an HTTP server for Common Lisp. developed at Massachusetts Institute of Technol-
ogy (MIT). CWEST forms a wrapper around GIB-Editor and causes it to generate appropriate
graphical output (non-graphical requests can also be handled). That output is then captured and
parsed: any pure textual portion is converted into HTML. while graphical regions are converted
to GIF files. The CL-HTTP server receives the requests of the WWW clients. forwards them to
CWEST for processing. and returns the result to the client.

Using CWEST. it was quite straightforward to reproduce many of the displays of the X-windows
versions of GRB-Editor in its WWW version. Ve had feared that transmitting the displays of
GKB-Editor as GIF images would be slow. but this did not turn out to be a serious problem in
practice. Even though the response time is slower than the corresponding response time for the
X-windows version. it is quite acceptable. In the X-windows version of GKB-Editor. a user can
incrementally expand and contract portions of a KB. A similar facility is available in the WWW
version except that the whole screen is redrawn every time a node is expanded or contracted.

In the future, we plan to incorporare two improvements in the WWW version of GkB-Editor:
multiple users and user preferences. The current implementation of the WIWW version of GKB-
Editor allows access to only one user at a time. Since we now are supporting read-only access, an
easy solution to this problem is to dedicate a GIKB-Editor process to each user. This will require
our server to distinguish between the requests coming from different users. which can be easily
done by encoding this information within each request. At present. all the user preferences are not
available in the WWW version. In the X-windows version. preferences are specified using CLIM
menus. Since similar menus are not available in HTML. we will use a form-based interface for
preferences.

GKB-Editor has already proven useful in the HPKB program and for Project Genoa. For our
HPKB project, GKB-Editor helped us comprehend the HPKB upper ontology. which led to its
effective reuse. In Project Genoa. it was used to develop an argument ontology. Several ontologies
and KBs available at the end of the first of year of the HPKB program will be used as test cases.
We also plan to make GRB-Editor available to Science Applications International Corporation.
who is our team member in the HPKB project, for knowledge acquisition for HPKB challenge
problems.

4 Reusing PERK with LOOM

The development of PERK started under a previous contract from the Air Force Research Labo-
ratory. The task undertaken under the current contract was to test its reusability with LOOM.
Most existing KRSs, such as LOOM and Ontolingua. fully load a KB into memory before
accessing any part of it. To provide persistence, kBs are written in their entirety to flat files
on secondary storage. This approach is not scalable because the loading and saving times are
proportional to the size of the KB rather than to the volume of information accessed in a given
session. or to the number of frames modified in a given session. Our storage system, PERK (for

21

PERsistent Knowledge), submerges a DBMS in a KRS, and retrieves frames incrementally, on
demand, from the DBMS. Because fetching of frames on demand from the DBMS, or demand
faulting, is analogous to page faulting in operating systems, we call this process frame faulting.
PERK tracks which frames have been modified and transmits those frames back to the DBMS
when the KB is saved.

One of the challenges that we faced while reusing the storage system with LOOM was that the
classifier code is not reentrant, that is, while we are classifving a concept A into the subsumption
hierarchy, we cannot always start classifying another concept B until classification of A is complete.
As a result, frame faults generated while classification is in progress cannot be serviced. because
if we try to do so. the classifier may find some of the internal data structures in an inconsistent
state. Therefore. before we start classifying a concept, we must make sure that all the concepts
that will be referenced in the process are already faulted in so that no frame faults are triggered
while the classification is in progress.

We found it difficult to predetermine all the frames that will be used while defining a given con-
cept because there is no document describing the classification algorithm of LOOM. We identified
the problem cases by testing our system with two real KBs. naval theory and aircraft, that were
developed by the Information Sciences Institute (ISI) at the University of Southern California.

When a concept A is referenced in the definition of concept B. we can notice it while parsing the
definition of A. and demand fault A before processing B. Another simple case arises while dealing
with the superconcepts: before a concept is loaded. we make sure that its direct superconcepts
have been loaded. It is easy to determine superconcepts because the superconcepts of a concept
are stored in the database.

A somewhat more involved case arises while classification is in progress. Suppose concept A
has two subconcepts B and C. When we load A. we will create stubs for B and C. When there is a
demand fault for B. we fetch it from the DBMS. While B is being classified. the classifier considers
classifving B under C. causing a demand fault for C. No matter whether we load B or C first. while
classifving one of them, the other one will have to be faulted in. In this particular instance. we
know that B cannot be classified under C. because otherwise this fact would have been stored in
the database. and we would have faulted C before faulting B. Therefore. we modified the classifier
to not consider C during the classification of concepts that are being loaded from the database.

Inverse relationships need special treatment because of the circular dependencies that they
may generate. For example. consider a slot A that is the inverse of another slot B. Suppose we
retrieve A when B is not loaded into LOOM. If, while A is being loaded. there is a frame fault for
a concept C (perhaps C appears in the definition of A) that has B as one of its slots, we cannot
define C because B is not vet defined. We could not go ahead and load B. because B is defined in
terms of A. and any attempt to load B will trigger a cyclical frame fault for A. We addressed the
problem by delaying the assertion of the slot values for C until both A and B have been faulted
in.

Even though we have empirically tested frame faulting for several KBs. we have no way to
guarantee that incremental loading has not changed the behavior of classification or that we have
taken into account all possible situations under which a frame fault may be generated during
classification. A principled study of classification in conjunction with demand faulting remains a
problem open for future research.

Our experience in using PERK with LOOM showed that there can be many unexpected inter-
actions between a storage system and the inference capabilities of a KRS, making it difficult to
design a generic storage system. Therefore, if PERK were to be used with another KRS. different
interactions with the inference capability of that KRS may arise and would have to be addressed.

A limitation of PERK is that once frames have been loaded into virtual memory, there is no

Lo
o

way to flush them out. Thus, PERK cannot deal with KBs that lead to a process whose size
exceeds virtual memory. We have not encountered this problem with any of the KBs we have
worked with so far.

The problem of flushing frames from memory is a problem that must be addressed in the long
term for the scalability of PERK. Flushing frames from memory is not straightforward because
frames can refer to other frames by pointers, and displacing a frame from memory can invalidate
references to it. Special-purpose schemes have been developed to solve this problem [KK93]. We
believe that some of the existing schemes can be incorporated into PERK.

5 Conflict Arbitration Interface for Collaboration System

Our collaboration system controls multiuser access to a KB, by first allowing the users to make
independent changes to the KB in their private workspaces, and when they are done. checking
for conflicting changes. and merging the changes into the public copy of the KB if the changes
are conflict free. If conflicting updates are detected. they must be reported so that the concerned
users can resolve the conflicts. Under the current contract. we initiated preliminary work on a
conflict-arbitration interface that reports the conflicting changes.

The user changes to the public copy of the KB are recorded as a log called net-log. A log
consists of a sequence of log records. Each log record is a list with two elements. The first element
is a list containing the name of the OKBC operation and the arguments with which it was invoked.
The second element is the list of any values that are being overwritten by the current operation.

For conflict detection with respect to a transaction 7. we examine the portion of the net-log
that contains operations executed after the begin time of I. To check the conflicts between a user
transaction and the net-log, we must check for each operation in the transaction. if the net-log
contains an operation that performs a conflicting update. Each update OKBC operation can.
in general. involve multiple updates. For example. the put-slot-values operation deletes the
old slot value(s) and inserts several new slot values. Furthermore. the number of possible OKBC
operations is large (over 200). so that analyzing conflicts between all possible combinations of
OKBC operations would be cumbersome. Therefore. before analyzing the conflicts. we translate
the operations into a canonical set of three operations — INSERT. DELETE. and REPLACE — on
the nodes and edges of the underlying KB graph. A REPLACE operation modifies an existing KB
value. Since the number of operations in the canonical set is smaller than the number of OKBC
operations, conflict analysis is considerably simplified.

In our initial design, the conflicts were displaved using an internal graph representation of
OKBC operations that is used in conflict checking. Since the user should not have to know
about the internal data structures. we needed a scheme to display the conflicts in a user-friendly
manner. We investigated two alternatives. The first alternative is to associate. with each translated
operation. the original OKBC operation that led to the conflict. Then conflicts can be reported
in terms of the original OKBC operation. The disadvantage of this approach is that it requires
additional bookkeeping to.relate each translated operation with the original OKBC operation.
Furthermore. some users may invoke OKBC operations by using a graphical tool such as GKB-
Editor and may not be familiar with specific OKBC operations. For such users, reporting conflicts
in terms of OKBC operations does not help much. The second alternative is to analyze the classes
of conflicts between graph operations. design textual descriptions for them. and use the textual
descriptions for conflict reporting. Since the number of cases of conflicts is small. it is a fairly
tractable solution.

To consider the solution in detail. let us consider an example contlict between two REPLACE

operations. The first REPLACE operation changes X to Y. and the second operation changes X to Z.
If X is a singleton, as in operations (REPLACE HEIGHT LENGTH) and (REPLACE HEIGHT
HT), we know that these operations are translations for rename-frame operations. The conflict
between them can be reported by

<Useri> renamed HEIGHT to HT which was previously renamed
to LENGTH by user <User2>.

If X is a list of length 2, such as, (REPLACE ((John age) 30) ((John age) 35)). we know that
the translated operation was generated from replace-slot-value operations. The conflict can
then be reported by

User <Userl> replaced age of John from 30 to 35 which was previously replaced
to 32 by user <User2>.

Using this approach. we were able to generate readable explanations for all the classes of
conflicts. Extensive user testing of this feature remains to be done. We expect to undertake that
task in our future projects.

6 Evaluation of OKBC

Defining a metric to measure the success of a generic API is difficult. We will argue that OKBC
has been successful in its goal of enabling the construction of interoperable tools by presenting
empirical evidence based on the definition of OKBC bindings for several KRSs.

6.1 OKBC bindings

Defining OKBC bindings for a2 KRS means implementing a subset of OKBC operations by using
calls to the native API of that KRS [Ric98]. OKBC bindings for several systems have been defined
by our research groups at KSL and SRI. At SRI. OKBC bindings were defined for LOOM [MB91].
Theo [MAC*39], SIPE-2 [Wil88]. and Ocelot [PLK97]. At KSL. OKBC bindings were defined for
Ontolingua [FFR97]. Abstract Theorem Prover {ATP) (a theorem prover developed at KSL), CML
[FIFBY6;. Tuple-KB {Ric93], file system KB. and CLOS. ISI has now produced its own version of
an OKBC binding for LOOM. An OKBC binding for Cyc [LG39] has been defined by Cycorp.
OKBC was recently licensed by Pangea Systems Inc. (see http://www.panbio.com) in support
of its projects in the area of bioinformatics. It is used extensively in several ongoing projects at
Stanford and SRI. and has been adopted by DARPA’s HPKB program
(see http://www.teknowledge.com/HPKB/).

6.2 OKBC uses in DARPA’s HPKB project

During the first year of the HPKB program, OKBC was used in the following contexts.

e SRI and KSL developed a translator to load the HPKB upper ontology into any OKBC
server. (The HPKB upper ontology was released in the MELD format used by Cycorp.)
As a result, the translator could be used by both SRI and KSL. The development of the
translator itself was facilitated by OKBC. because we could use our GKB-Editor to compare
the translations produced by KSL and SRI as they were being developed. The comparisons
helped us identify semantic differences and led to a common translator.

24

e SRI used OKBC to interface the theorem prover SNARK to an OKBC server storing the
World Fact Book KB (WFBKB). Since the WFBKB is quite large. we did not want to
incorporate it into SNARK. The procedural attachment feature of SNARK was used to look
up the facts that were available only in the WFBIKB.

e MIT's START system used OKBC to connect to SRI's Ocelot/SNARK OKBC server. This
connection will eventually give a user the ability to pose, in English, questions that are then
transformed to a formal representation by START. and shipped to SNARK using OKBC;
the result is returned using OKBC. During HPKB Year 1, START generated only prespec-
ified formal representations of the challenge problem questions that were then answered by
SNARK.

o ISI built an OKBC server for LOOM that was extensively used by Gheorghe Tecuci at
George Mason University. SAIC built a front end to the OKBC server for LOOM, and it
was extensively used by the members of the battlespace challenge problem team.

® SRI used a C client that was originally developed by KSL. The C client was tested with
SRI's OKBC server without any difficulty and has been delivered to Pacific Sierra Research
for use in Project Genoa.

We anticipate that the OKBC experiences during HPKB Year 1 will substantially scale up
during Year 2. In particular, we expect greater use of OKBC in conjunction with theorem provers.
stronger connection with MIT's START. and greater use within Project Genoa.

6.3 Limitations of OKBC

The goal of OKBC is to enable the construction of reusable KB tools — that is. the application
programs that access a KRS to perform browsing. editing. or reasoning tasks. Empirical evi-
dence has shown success in meeting this goal. Potential users of OKBC are usually concerned
with whether they can successfully use OKBC in their projects. Here. we identify some of the
commitments and sacrifices that they may need to make to use OKBC successfully.

To construct a new OKBC binding for a KRS. it is necessary to identify the knowledge model
used by the KRS and define a mapping between it and the OKBC knowledge model. By providing
both frame-oriented and assertional views of a KB. OKBC is capable of supporting a wide range
of systems. Some systems do not easily admit to either of these views. While an OKBC binding
can be defined for such systems, some users may not find it to be an intuitive or natural mapping.
OKBC bindings work best when the knowledge model of the KRS closely matches that of OKBC.

OKBC bindings isolate a KB tool from many of the peculiarities of a KRS. but certainly
cannot cover all of them. Therefore. porting a KB tool to a new KRS usually requires some
additional effort. For example. Ocelot supports a slot type called :unique. The slots of this type
are inherited by subclasses and instances. but their values are not inherited. For GKB-Editor to
handle this peculiarity, a small amount of Ocelot-specific code had to be added. Similarly. ATP
provides operations to return the proof that a value satisfied some query. but OKBC does not
currently provide any operations for specifically extracting proofs.

OKBC is neither the lowest nor the highest common denominator protocol. We cannot hope
that it will expose all of the functionality of every system. but it exposes what we believe most
applications want. In addition, the protocol is specifically designed to be extensible by means
of the behavior mechanism so that clients and servers can negotiate the use of a more powerful
functionality than is provided by the protocol.

[S]
ot

Some aspects of OKBC are easily extensible, for example, adding a new inference level or a
new facet. Adding a new inference level requires giving its axiomatic definition and, if possible,
providing a default implementation of affected methods. Extending OKBC to deal with arbitrary
disjunctions and negations is not straightforward as they are not a part of the OKBC knowledge
model. Support for assertions has also been identified as a requirement by the HPKB project and
is planned as a topic for further work. ,

The guarantees given by OKBC are quite weak: if two OKBC servers have different behaviors,
identical operations executed on them are likely to have different results. A part of the reason for
such a weak guarantee is that OKBC is a generic API, and its specification has been purposefully
kept flexible.

OKBC is a functional interface to a KB [BFL83] and does not specify the data structures
that should be used to implement its knowledge model. Using OKBC, an application cannot
manipulate internal KRS data structures that are used to implement frames.

OKBC does not solve the problem of semantic KB interoperation. For example. using the
OKBC operation get-slot-values. an application may query the salary of a person from two
different systems, but there is no guarantee that the returned values will be semantically identical
— one system may return annual salary and the other system may return monthly salary. Semantic
interoperation is beyond the scope of OKBC.

7 Directions for Future Work

The research and development effort undertaken under this project can be extended in many

directions as suggested here.

7.1 OKBC applications

The object-oriented features of OKBC are well developed. Even though the OKBC knowledge
model may be at the lower end of expressiveness of KR languages. it is more advanced than many
commercial object-oriented languages. for example, the data description language for MPEG-¥
[ISO98] or XML [TBYS]. We believe that the commercial languages can significantly benefit from
the design experience of OKBC. We would like to investigate that possibility in the future.

GFP was primarily geared toward object-oriented KRSs. and did not provide much support for
general assertions in a KB. OKBC partially corrected this problem by supporting an assertional
view of a KB. The current support for assertions is. however, quite limited and a lot more can be
supported, suc as an operation to check the equivalence of formulas or an operation to produce
the clausal form of a formula. Extending OKBC to provide support for assertions remains open
for future work.

7.2 Speeding KB construction time

Developing a new KB is a time consuming and expensive process. At least two techniques exist
for speeding up the KB construction process: creating a new KB by reuse and allowing multiple
domain experts to simultaneously enter information into the KB. The knowledge reuse involves
KB comprehension (understanding a KB). KB translation (putting it in the right syntax), KB
selection (identifying portions of a KB that are of interest) and merging (one or more KBs to
produce a new one). GKB-Editor is a valuable tool for the KB comprehension phase of knowledge
reuse. OKBC enables KB translation. by providing an API to manipulate the KB. and by a
well-specified knowledge model that is the basis for an easy interchange of taxonomic knowledge.

26

Under DARPA’s HPKB project, we initiated some work on KB selection to extract portions of a
KB that are of interest. These capabilities can be made available through GKB-Editor.

Our longer-term objective is to develop GKB-Editor into a comprehensive ontology develop-
ment environment. In our future work, we would like to expand upon the ontology selection work
that we initiated under the HPKB project. The graphical nature of GKB-Editor makes it easier
for a user to identify the portions of a KB that are of interest. GIKB-Editor does not yet have
direct support for manipulating deductive rules. Since axiomatic knowledge expressed in form of
deductive rules is an integral part of a KB, we would like to extend both GKB-Editor and OKBC
to manipulate rules.

To speed up the KB construction time. a technique orthogonal to knowledge reuse is to have
several subject matter experts directly enter knowledge into a KB. Both GKB-Editor and a col-
laboration system can play an important role in the process. GKB-Editor can be extended to
provide a more intuitive interface for knowledge entry as compared to entering knowledge into
a flat file by using logic. The current design of GRKB-Editor is aimed at KR experts, therefore,
in some cases. 1t exposes more representation details than a domain expert may need to know.
Additional viewers would need to be incorporated to give domain-specific visualizations of a KB.
A collaboration system can enable multiple domain experts to simultaneously enter knowledge
into the KB. The conflict collaboration interface developed as part of this project will allow the
resolution of any conflicting updates perfornied by domain experts.

7.3 Knowledge bases and knowledge discovery

Knowledge bases can enable knowledge discovery from databases (KDD) by providing a natu-
ral. object-oriented representation of an application domain. a powerful query language that can
manipulate schema as well as the ground facts. and an easy-to-use graphical interface that can
support interactive exploration [CK97. KCP99. BST*92]. KDD. in turn. can enable the construc-
tion of a KB by semiautomated derivation of rules of domain knowledge or by starting from a KB
and refining it based on the data in a database. This two-way interaction presents a multitude of
opportunities. and we address some of them here.

Many KDD engines use automatic statistical or machine-learning mechanisms to search for
implicit patterns in data. The overall KDD task faced by an analyst. however, involves many
activities in addition to those offered by the core KDD engine. The input necessary for a KDD
engine is not usually available in the required format. and in most cases, has to be prepared by
processing the data in an existing database. For example, in an analysis of commodities exported
by a country. the export data may be available for each product {such as beef. chicken. etc.), but the
input to the KDD engine needs to be represented in terms of abstract categories of products (such
as animal products). In such a situation. an ontology categorizing commodities can significantly
aid an analyst in preparing the data for input to the KDD engine. KDD tasks are usually iterative
and involve experimenting with categories at different levels of abstraction. Frame Representation
Systems. such as Ocelot. and graphical browsing and editing tools. such as GKB-Editor [KCP99],
are natural tools for hierarchical representation. display. and selection of knowledge. Their utility
is significantly enhanced with an interface to a commercial DBMSs supported by a system such
as PERK [KCP99].

Large KBs such as the Cyvc KB, the Sensus ontology, or the Ontolingua ontology library, are
expensive to build [LG89. KL94, FFR97]. The output of a KDD task can contribute significantly
to KB development. Many KDD tasks extract association rules from data, which can be integrated
directly into a KB. If these newly learned rules are determined to be inconsistent with existing
rules in the KB, this serves as an indicator of potential errors in the existing rules, or in the data

(3]
-~

that was used to generate the new rules. In other cases. a KB may contain causal rules that do
not have associated probabilities indicating the strength of causation. Probabilistic KDD tools
can use empirical data to assign probabilities to these rules.

In summary, leveraging KB systems with KDD tools will permit more effective knowledge
understanding by providing KB support to prepare data for the KDD process, and using the
output of the KDD tools to refine the contents of the KB.

7.4 Object-relational knowledge servers

Our storage system PERK is aimed at extending the KRSs with “database-like” capabilities —
for example. efficient storage and retrieval and multiuser access. In the current architecture of
PERK, the KRS acts like an object-oriented cache to a DBMS server. The main advantage of
this architecture is that we can provide efficient support for common KRS operations. such as
taxonomic inference and queries on the KB schema within the cache. The disadvantage is that
one is forced to reproduce. in the cache. some of the database functionality. for example. flushing
out frames from memory and query optimization. The inability to flush the frames out of memory
is in fact a known limitation of PERK and prevents it from handling KBs that are bigger than
the virtual memory.

A fundamentally different architecture for PERK will be to exploit the object-relational capa-
bilities of a DBMS. For example. Oracle 8 now supports limited forms of an object-oriented data
model. It also supports a client-side cache to allow efficient retrieval for object navigation. Oracle
R allows user-defined types and has provisions for adding data-type-specific access methods. Such
extensibility features are known as data cartridges or data blades. Use of data cartridges is an at-
tractive alternative to embedding database functionality in KRSs. For example. in an alternative
design of PERK the inheritance capability can be added to the database as a cartridge. With the
client-side cache facility. it is not necessary to cache objects in the KRS memory. Since Oracle
supports buffer management of the cache. the problem of flushing out the frames from the KRS
memory disappears. In this fundamentally different architecture of PERK. most of the database
functionality is pushed into the database server. and the KRS capability is added to the database
by using cartridges. If this architecture proves viable from an efficiency viewpoint, it can prove to
be a general technique for integrating KB applications with a DBMS. We plan to investigate the
use of an object-relational-based architecture in our future work.

8 Summary and Conclusions

The primary theme in this project was to investigate the techniques for constructing reusable
knowledge base (KB) development tools. The technique employed for this purpose was Open
Knowledge Base Connectivity (OKBC). which is an API for accessing KRSs.

OKBC evolved from the Generic Frame Protocol (GFP). its predecessor, and made several
important contributions including the design of an assertional view of a knowledge representation
system (KRS), constraint checking operations. and comparison with schema querying facilities of
object-oriented databases. It was adopted as an API for DARPA's High Performance Knowledge
Bases (HPKB) project and was used by several contractors in the HPKB program. The most
powerful result of this work was the OKBC knowledge model which is reusable not just across
KRSs. but also across a range of object-oriented applications.

We experimented with several kB development tools to test the ability of OKBC to enable the
construction of reusable tools. These tools included GKB-Editor, a graphical tool for browsing

and editing KBs, and PERK, a system for storing KBs in Oracle and for controlling multiuser
access to KBs. We were able to more easily enable the reusability of GKB-Editor than of PERK,
because PERK needs to access many of the internal data structures of a KRS that are not exposed
bv OKBC.

For supporting reusability among KRSs, behaviors and additional return values proved to be
central techniques for OKBC. Wherever it is not feasible to legislate certain requirements, KRSs
can expose their differences from the OKBC knowledge model either globally by setting the value
of a behavior. or locally by returning an additional value from an operation. For example, support
for frame names can be advertised by using the : frame-names-required behavior. and the degree
of conformity to the :inference-level argument is exposed by an extra return value.

Design experience with OKBC suggests the existence of an ~expressiveness vs. generality”
tradeoff that is similar to the “expressiveness vs. tractability” tradeoff [LB87). Some of the KRSs
with which we have used OKBC are highly expressive and would require OKBC to support an
equally expressive knowledge model to expose their full functionality. A highly expressive knowl-
edge model, however. makes defining OKBC bindings for KRSs with limited functionality difficult
and time consuming. Throughout the design of OKBC. this tradeoff was a guiding principle for
carefully controlling the expressiveness of the knowledge model. We believe that expressiveness
vs. generality is a fundamental tradeoff in knowledge sharing.

The results of the project represent a substantial research and development activity. The tools
developed during this project were heavily used in DARPA’s HPKB project. GKB-Editor is being
extensively employed to enable KB comprehension and reuse. The KB for project Genoa is being
developed using GKB-Editor. OKBC is being used as an API by several participants in the HPKB
program. We expect collaboration capabilities of PERK to be increasingly important in future
projects.

References

[BBMRS9] Alexender Borgida, Ronald J. Brachman. Deborah L. McGuinness. and Lori Alperine
Resnick. CLASSIC: A Structural Data Model for Objects. In Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data, pages 58—
67. Portland. OR, 1939.

[BCS98] Alex Borgida. Vinay K. Chaudhri. and Martin Staudt. Report on the 5th Interna-
tional Workshop on Knowledge Representation Meets Databases (KRDB"98). SIG-
MOD Record. 27(To appear), 1993.

[(BDK97] Gerhard Brewka, Jurgen Dix, and Kurt Konolige. Non Monotonic Reasoning. Cam-
bridge University Press, 1997.

[BFL33] R.J. Brachman, R.E. Fikes. and H.J. Levesque. KRYPTON: A Functional Approach
to Knowledge Representation. IEEE Computer, 16(10):67-73. October 1983.

(BST*92] R. J. Brachman, P. G. Selfridge, L. G. Terveen, B. Altman, A. Borgida, F. Halper,
T. Rirk. A. Lazar, D. L. McGuiness. and L. A. Resnick. knowledge Representation
Support for Data Archaeology. In Proceedings of the First International Conference
on Information and Knouwledge Management. Baltimore, MD, 1992.

[Cat95] R. G. G. Cattell. The Object Database Standard: ODMG-93. Release 1.2. Morgan
Kaufmann Publishers. Inc., 1995.

[Cat97]

[CFF*97]

[CFF+08]

[CK97]

[FFRI7)

[FIFBY6.

[Gel95]
(GF92]

(1S093]

[Kar9?]

[KCP99)

[KK95]

[KKS92]

[KL94]

[KMG95]

R. G. G. Cattell. The Object Database Standard: ODMG-93, Release 2.0. Morgan
Kaufmann Publishers. Inc., 1997.

Vinay K. Chaudhri. Adam Farquhar, Richard Fikes, Peter D. Karp, and James P.
Rice. The Generic Frame Protocol 2.0. Technical report, Artificial Intelligence Center.
SRI International, Menlo Park, CA, 21 July 1997.

Vinay K. Chaudhri. Adam Farquhar, Richard Fikes, Peter D. Karp, and James P.
Rice. OKBC: A Foundation for Knowledge Base Interoperability. In Proceedings of
the National Conference on Artificial Intelligence. pages 600-607, July 1993.

Vinay K. Chaudhri and Peter D. Karp. Querying Schema Information. In Proceed-
ings of the {th International Workshop Knouledge Representation Meets Databases
(KRDB'97), pages 4-1 to 46, Athens, Greece. 1997.

Adam Farquhar, Richard Fikes. and James P. Rice. A Collaborative Tool for Ontology
Construction. International Journal of Human Computer Studies, 46:707-727, 1997.

Adam Farquhar, Yumi Iwasaki. Richard Fikes, and Daniel G. Bobrow. A Com-
positional Modeling Language. In Proceedings of the 1996 Qualitative Reasoning
Workshop. 1996.

Kyle Geiger. Inside ODBC. Microsoft Press. 1995.

\lichael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format. Version
3.0 Reference Manual. Technical Report Logic-92-1, Computer Science Department.
Stanford University. Stanford. CA. 1992.

ISO. MPEG-T Applications Document. Technical Report MPEG 98/N2462, Inter-
national Organization for Standardization. October 1998.

P.D. Karp. The design space of frame knowledge representation systems. Tech-
nical Report 520. SRI International, Artificial Intelligence Center. 1992. URL
ftp://www.ai.sri.com/pub/papers/ karp-freview.ps.Z.

Peter D. Karp, Vinay K. Chaudhri. and Suzanne M. Paley. A Collaborative Envi-
ronment for Authoring Large Knowledge Bases. Journal of Intelligent Information
Systems. 1999. To appear.

Alfons Kemper and Donald Kossmann. Adaptable Pointer Swizzling Strategies in Ob-
ject Bases: Design. Realization. and Quantitative Analysis. VLDB Journal, 4(3):519-

566. 1995.

Michael Kifer, Won Kim. and Yehoshua Sagiv. Querying Object-Oriented Databases.
In Proceedings of the 1992 ACM SIGMOD International Conference on Management
of Data. pages 393402, San Diego, May 1992,

K. Knight and S. Luk. Building a Large-Scale Knowledge Base for Machine Trans-
lation. In Proceedings of the National Conference on Artificial Intelligence. Seattle.
WA, August 1994.

P.D. Karp, K. Myers. and T. Gruber. The Generic Frame Protocol. In Proceedings
of the 1995 International Joint Conference on Artificial Intelligence, pages T68-774.
1995. See also WWW URL ftp://£tp.ai.sri.com/pub/papers/karp-gfps5.ps.2.

30

(KRPPT96] P. Karp. M. Riley, S. Paley, and A. Pellegrini-Toole. EcoCyc: Electronic Encyclopedia
of E. coli Genes and Metabolism. Nucleic Acids Research, 24(1):32-40, 1996.

(LB87] H.J. Levesque and R.J. Brachman. Expressiveness and Tractability in Knowledge
Representation and Reasoning. Computational Intelligence, 3(2):78-93, 1987.

[LG89] Douglas B. Lenat and R.V. Guha. Building Large Knowledge-based Systems: Repre-
sentation and Inference in the Cyc Project. Reading, MA, Addison-Wesley Publishing
Co., 1989.

[LSS96] Laks V. S. Lakshmanan. Fereidoon Sadri, and Iver N. Subramanian. SchemaSQL —
A Language for Interoperability in Relational Multi-database Systems. In Proceedings
of the 22nd International Conference on Very Large Databases. Bombay, 1996.

MAC*89] T.M. Mitchell, J. Allen. P. Chalasani. J. Chen , E. Etzioni, M. Ringuette. and J.C.
g
Schlimmer. Theo: A Framework for Self-Improving Systems. In Architectures for
Intelligence. pages 323-355. Erlbaum. 1989.

[Mac91] R. MacGregor. The Evolving Technology of Classification-based Knowledge Rep-
resentation Systems. In J. Sowa. editor. Principles of Semantic Networks, pages
385-400. Morgan Kaufmann Publishers, Los Altos. CA. 1991.

[MB91] R. MacGregor and M.H. Burstein. Using a Description Classifier to Enhance Knowl-
edge Representation. IEEE Expert, 6{3):41-46. June 1991.

[PLK97] Suzanne M. Paley. John D. Lowrance, and Peter D. Karp. A Generic Knowledge
Base Browser and Editor. In Proceedings of the Ninth Conference on Innovative
Applications of Artificial Intelligence. 1997.

[Ric98] James P. Rice. Writing an OKBC Application. Technical Report KSL-98-15, Knowl-
edge System Laboratory. Stanford. CA. April 1993.

[TB98] C. M. Sperberg-McQueen Tim Bray, Jean Paoli. Extensible Markup Language (XML)
1.0. Technical Report rec-xml-19980210, World Wide Web Consortium, October 1993,
See http://www.w3.org/TR/REC~xml.

[Wilg8] D.E. Wilkins. Practical Planning: Ertending the Classical 41 Planning Paradigm.
Morgan Kaufmann. August 1983.

=U.5. GOVERNMENT PRINTING OFFICE: 2000-510-079-81245

' 31

